Esta monografía es una exposición detallada de los temas más importantes del análisis tensorial y la geometría riemanniana.
En el primer capítulo del primer tomo se ofrece una introducción a la teoría de tensores y los métodos tensoriales junto con sus aplicaciones físicas. Por el nivel del material tratado, este capítulo se aconseja especialmente a los ingenieros y estudiantes universitarios que deseen tener los conocimientos mínimos de análisis tensorial que generalmente se necesitan en las aplicaciones técnicas.
En lo que respecta estrictamente a los conceptos e instrumentos matemáticos, el primer tomo contiene, además, capítulos especialmente dedicados al estudio de otros temas: espacios afines, espacios euclídeos y seudoeuclídeos y teoría de espinores. Asimismo, esquemáticamente, el contenido del segundo tomo es el siguiente: coordenadas curvilíneas, variedades, espacios riemannianos y seudoriemannianos, espacios de conexión afín, cálculo diferencial absoluto y tensor de curvatura de un espacio riemanniano.
Una de las particularidades que distinguen este libro de otros dedicados a la misma temática son las «incursiones» que hace el autor en el territorio de la física. Siempre que es posible, el autor indica especialmente estas salidas del campo del análisis tensorial y la geometría riemanniana. Las aplicaciones más notables del análisis tensorial y la geometría riemanniana están relacionadas con la teoría de la relatividad, a la cual se han dedicado el capítulo 4 del primer tomo (teoría especial) y el capítulo 10 del segundo (teoría general).
El material teórico se complementa con problemas y ejemplos, que, a pesar de su carácter particular, son de gran importancia (teoría de curvas e hipersuperficies en el espacio riemanniano y otros).
Este libro está dirigido a los estudiantes de especialidades técnicas, ingenieros, físicos, así como a los especialistas en análisis tensorial y geometría riemanniana. Se recomienda como libro de texto para los estudiantes de centros de enseñanza superior.